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1. BACKGROUND

Oak Ridge National Laboratory (ORNL) has been engaged to develop molten salt technologies. Molten 
salts are chemically aggressive liquids that operate at high temperatures. As part of this activity, ORNL 
designed a molten salt pump for molten salt that has no seals and that operates immersed in the salt. To 
minimize wear on rotating components, the pump uses active magnetic bearings (AMBs) to support the 
shaft and rotor. The pump is centrifugal and is oriented horizontally (A. Melin, 2013).

The AMB system requires active control to operate. Figure 1 shows the AMB principle of operation and 
control (Calnetics, 2020). A ferrous object (pump rotor) levitates in a magnetic field created by an 
electromagnet. The force of gravity is balanced by the electromagnetic force. 

Figure 1. AMB operation and control principle.

As the rotor deviates from its initial position, there is no inherent self-controlled mechanism to return the 
rotor back to its original position. Therefore, the magnetic field is used for adjustment. Typically, a 
position sensor detects the deviation, and a controller is used to adjust the current to the electromagnet.

The specific AMB control as applied to an immersed pump rotor relies on the mechanical forces acting on 
the rotor, as well as the forces from the rotating fluid. Melin et al. (A. Melin, 2013) developed a rotor 
mechanical dynamic model to aid the AMB control. The model employs two matrices of coefficients to 
account for the fluidic effects: a damping matrix, and a stiffness matrix. The goal of the computational 
fluid dynamics (CFD) modeling and simulation was to help define those coefficients. The STAR-CCM+ 
commercial CFD package was used (Siemens, 2020).
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2. COUETTE FLOWS: TRANSITION TO VORTICIAL FLOW 
STRUCTURE, CRITICAL RE NUMBER

The pump assembly has a rotor with a shaft connected to the impeller, and a stator contains the 
electromagnets. The fluid (salt) fills in the assembly, thus eliminating the need for seals. This type of 
pump is known as a canned pump. 

The fluid problem was approximated with two concentric cylinders (rotor and stator), and only the inner 
cylinder rotates. The fluid in the gap between the rotor and the stator is subjected to shear rotational 
forces.  At low speeds, the exact solution of the Navier-Stokes equations for an incompressible flow in the 
gap between the two cylinders results in only the radial velocity component, or Couette flow (M. Couette, 
1890). Two types of force balance to stabilize the flow: a centrifugal force caused by the rotating inner 
cylinder, and a pressure gradient force from the velocity distribution in the gap. Recktenwald (A. 
Recktenwald, 1993) defined a velocity-based Reynolds number (Re) at the inner cylinder surface that can 
be used to characterize the flow in the gap (d):

Re =  Ri d / , (1)

where 

 is rotational speed, rad/s; 
Ri is the inner cylinder’s radius, m; 
d = (Ro-Ri) – gap, m; and 
 is kinematic viscosity, m2/s.

To analyze the Couette flow and verify the numerical solution, two computational models were developed 
with small and large rotor radius–to–gap ratios. Using the gap (d) as a length scale, the model dimensions 
were as follows: 

Model 1: Ri = d, Ro = 2 d, ( = 0.5), length L = 3 d, Model 2 (closer to the real pump 
model): Ri = 44 d, Ro = 45 d ( = 44/45 = 0.98), length L = 3 d. 

The models assume axial periodicity equivalent to cylinders of infinite length. The verification aimed to 
show that the viscosity forces that damp the instabilities at low speeds are properly calculated. It is also 
helpful to define requirements to the spatial discretization and modeling methods. Table 1 summarizes 
some of the key model parameters.

Table 1. Summary of model parameters

Hexahedral elements
Double-sided 6-element boundary layers

Model 1 Model 2

Gap resolution 50 20–30
Computational grid parameters

Total grid elements 4.6M 3–59 M

Segregated steady solution
Viscous laminar flow
Second-order convection flux

Solution models

Constant density
Axial periodicity

Boundary conditions Prescribed inner wall rotational velocity
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If the gap resolution is kept the same, then the large Ri-to-Ro () ratio leads to an increased number of 
elements. The gap resolution for Model 2 was varied between 20 and 40, which produced grids with 
elements between 3 and 59 million (Table 1), depending on the meshing algorithm. Another possible 
reason for reducing the grid size is to model the geometry in partial symmetry or in frames of reference. 
This option was not explored because of uncertainties with the modeling of the offset configuration. The 
two model geometries and computational grids are shown in Figure 2.

Figure 2. Computational models, geometries, and grids: Ri/d = 1 (left), Ri/d = 44 (right).

The analytical Couette flow solution, which is used for verification, provides velocity and pressure 
gradient distributions in the gap. Velocity is shown in Eq. (2), and pressure gradient is shown in Eq. (3) 
The distributions are functions of the radial coordinate, the inner and outer radii ratio =Ri/Ro, and the 
rotational speed . 

𝑉 = ―𝛺
𝜂2

(1 ― 𝜂2) 𝑟 +
𝑅2

𝑖
(1 ― 𝜂2)

1
𝑟               

(2)

(3)

2.1 CONCENTRIC CYLINDERS, COUETTE FLOWS

The computational models, Models 1 and 2, were run in steady mode for 10,000 time steps to confirm a 
continuous decline of solution residuals and to verify that no instabilities develop. Figure 3 shows the 
results from Model 1 (0.5) for Re =55, which is close to the limit of stable flow. Of the three velocity 
components, only the radial velocity (V) is non-zero, as shown in the left image of Figure 3. On the right 
of Figure 3, the velocity and the pressure gradient are compared to the analytical values. A perfect match 
is noted, confirming the accuracy of the numerical solution in predicting stable shear-dominated flow at 
low rotational speeds. 

∂𝑝
∂𝑟 = 𝜌

𝑉2

𝑟              
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Figure 3. Model 1 results for concentric cylinders Re = 55,  = 0.5.

Identical results were obtained with Model 2 for  = 0.98 (

Figure 4). The narrow gap shear forces stabilize the flow to higher rotational speeds, corresponding to Re 
= 250. As in Model 1, the comparison to the Couette solution is perfect.  

With these two calculations, the model verification with analytical solutions was deemed complete. It can 
be concluded that the balance of forces in the gap (pressure vs. centrifugal) was correcly simulated. At 
low speeds, the viscous forces dominate and do not allow instabilities to develop.

 

Figure 4. Velocity vectors across the gap for Model 2 with  = 0.98 and Re = 250. 

2.2 ECCENTRIC CYLINDERS IN STABLE COUETTE FLOWS

The Couette solution applies to a stable, viscosity-dominated (no instabilities) flow of concentric 
cylinders. It does not consider the scenario in which one of the cylinders is offset. Such a problem, 

stator

rotor

Velocity vectors in gap showing only one radial 
velocity component

Radial pressure gradient in gap: circles indicate 
simulation, and the line indicates the analytical 
solution. See Eq. (3).

Velocity in gap: circles indicate simulation, and the 
line indicates the analytical solution. See Eq. (2).

Velocity vectors in gap Couette analytical solution vs. numerical data for gap velocity 
and pressure gradient
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however, is of practical interest for the AMB control. The eccentric case was simulated by assuming an 
eccentricity  = 0.5/0.75 = 0.67, corresponding to the maximum possible pump shaft shift. 

Figure 5. Eccentric case for h = 0.5 and Re = 55. 

The offset problem was first computed for Model 1 ( = 0.5). The velocities are plotted in 

Figure 5. The Re number was kept the same as in the concentric case for consistency. When the rotor shifts, 
two gaps form—one narrow and one wide. The flow structure in these two gaps is different. In the narrow 

gap, the flow is very similar to the flow in the symmetric case, having strictly one directional velocity 
component. However, in the wide gap, a recirculation flow appears that produces a negative radial velocity. 
The gap velocities are only radial as in the symmetric problem. The Couette solution, which is plotted on the 

right in 

Figure 5, deviates from the numerical result because the boundary condition is not applicable.

Figure 6. Pressure distributions for case h = 0.5 Re 55, Couette flow.

Velocity vectors

Comparison to Couette solution for the wide (top) and narrow 
(bottom) sides of the gap

Concentric case Eccentric case
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The pressures in the concentric and eccentric problems, however, are quite different, as seen in Figure 6. 
Hydraulic pressure is the major contributor to the fluid forces acting on the cylinders. In the concentric 
case, the pressure is radially symmetric, whereas in the eccentric case, high- and low-pressure zones 
appear on both sides of the inner cylinder. 

The narrow gap (0.98) problem produced identical results (Figure 7). The flow is stable and one- 
dimensional. The recirculation region in the wide gap occupies about half of the gap width, as in the Model 1 (

Figure 5) case. The pressure is asymmetric; it is higher on the side of flow contraction, which results in 
the formation of a recirculation pattern in the wide gap. 

Figure 7. Eccentric case for narrow gap, h = 0.98 at Re = 250.

2.3 TRANSITION TO INSTABILITIES: VORTEX FORMATION

As the rotational speed of the inner cylinder increases, instabilities appear, causing vortices to develop in 
the gap. The vortices transport liquid in the radial direction, equalizing the pressure gradient. The critical 
Re number at which the vortices appear was defined by Recktenwald (A. Recktenwald, 1993) in the 
function of the inner and outer cylinder ratio, . The instabilities begin as detailed in the table below.

Table 2. Instabilities resulting from rotation of inner cylinder

Re (simulation) Re
Concentric Eccentric

0.5 68 80 150
0.975 261 400 580

2.3.1 Concentric Problem  = 0.5 (Model 1)

The vortices for the concentric problem are shown in 
Figure 8. The illustration on the left is from Lueptow (R. Lueptow, 2009). The right plots in 
Figure 8 show the calculation with Model 1. In the simulation, the gap flow transitions to a vortex 
structure with a Re number of 80 instead of 68, as predicted by Recktenwald (A. Recktenwald, 1993). In 

Wide gap and insert: small gap Pressure
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the plots on the right-hand side of 
Figure 8, velocity is plotted on the left, and vorticity is shown on the right. 

Figure 8. Schematic of counter-rotating axisymmetric vortices of Taylor-Couette flow (R. Lueptow, 2009).

The vorticity is only shown as normal to the plane direction to emphasize the number and direction of 
vortices more clearly. The vortex structure is more complex than that plotted in 
Figure 8. Within the computed domain, with a length equal to three times the gap (3 d), two pairs of 
vortices form. The wavelength ( for a single pair is  = 3 d/2 = 1.5 d, contrary to the results reported by 
Recktenwald (A. Recktenwald, 1993)  = 2 d: that is, three individual vortices instead of four. This makes 
the vortex structure more complex in the simulation, where the vortices are smaller than the gap. An 
additional flow rotation is noticed next to the inner and outer walls, which is not reported by Recktenwald 
(A. Recktenwald, 1993). The vortices rotate in opposite directions (against each other), moving liquid in 
the gap from the inner to the outer cylinder. 

2.3.2 Eccentric Problem  = 0.5,  = 0.67 (Model 1)

The rotational speed of the inner cylinder was gradually increased until a vortex structure in the gap 
began to appear. The computed critical Re number was 150. Results are shown in Figure 9. The inner 
cylinder offset stabilizes the flow and delays the instability. The vortices in the narrow gap are barely 
noticeable. In the wide gap, the vortices occupy only half of the gap, whereas in the other half (closer to 
the outer cylinder), the flow has low velocity, and vortices do not form. 

Figure 9. Vortex formation for the eccentric Model 1 problem: velocity (left) and vorticity (right) 
showing the vortices in the narrow and wide gaps, computed critical Re = 150.

Model 1 instabilities and vortex 
formation at Re = 80 Velocity (left) and vorticity (right) in 

normal direction to the plane
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The pressures for the eccentric problem are plotted in Figure 10 for a stable flow on the left (Re = 55), 
and for an unstable flow at Re = 150 on the right. The pressure scale is the same for both plots. It is 
evident that with increasing rotational speed, regardless of the presence of vortex structure, the pressure 
load on the inner cylinder increases. 

Figure 10. Static pressures for Re = 55 stable (left), and Re = 150 instability inception (right).

2.3.3  Concentric Problem  = 0.98 (Model 2)

According to Recktenwald (A. Recktenwald, 1993), for  the transition to vortical flow should 
occur at approximately Re = 261. The simulations show that at Re ≈ 400 and greater, some instability in 
the gap appears in form of a wavy structure. For lower Re numbers, the flow is stable. Vortices do not 
explicitly form as they do in the case of  = 0.5 (
Figure 8). Figure 11 shows the result from a transient run after 7 rotations at Re = 400. The flow structure 
is wavy (left), as caracterized by radial mounds and valleys. The velocity in the gap follows the Couette 
profile closely only in the valleys (lower right). The normal to gap vorticity component (upper right) 
indicates flow rotation. This result resembles a combination of Couette and Taylor vortex flows. Similar 
to the Model 1 (large gap) result, the wavelength of a single vortex pair is  = 1.5 d (two pairs in 3 d 
domain). The predicted vortices are not fully round, but they occupy the entire gap in the radial direction, 
which is contrary to the Model 1, in which additional rotation near the walls is seen.
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Velocity vectors in gap Normal vorticity (top) and

Couette velocity comparison (bottom)

Figure 11. Model 2 result at Re = 400, converged transient simulation 
with a timestep of 0.001 after 3 s (7 revolutions). 

To investigate the problem further, two approaches were analyzed: (1) increasing the rotational speed, and 
(2) modifying the spatial discretization (computational grid) to improve convergence. A brief summary of 
this calculation scope is given in Table 3.

Table 3. Summary of meshing sensitivity to modeling the transition to vortices for  = 0.98

Gap resolution Type of 
simulation

Meshing 
method Number of 

elements

Re Convergence of 
axial momentum 

residual

Outcome

20 Steady Directed, hex, 
axial length 
10 d

26 M
boundary layers 
(BLs)

290 1.e-2 Wavy axial velocity

25 including 
BLs 

Transient, 
timestep 1.e-3, 
Courant-
Fredrichs-
Lewy (CFL) 3

Patch, hex high 
quality, domain 
3 d 2 M

290 1.e-9 – 1.e-12 Waviness 
disappears

As above, 
CFD 3.6

As above As above 400 7.e+1 – 2.e-4 Results shown in Figure 11 

25 including 
BLs

Transient, 
timestep 1.e-3, 
CFL 6

Patch, hex high 
quality, domain 
3 d 2M

578 6.e+1 – 7.e-5 (movie) 

20 Steady Directed, hex, 
axial length 3 d

9M, BL

1,375 - Wavy axial 
velocity

20 Steady RANS Directed, hex, 
axial length 3 d 9M, BL

1,375 - Couette flow, 
damped 
waviness 

45Transient, 
timestep 1.e-5, 
CFL 5

Directed prism, 
length 3 d 59 M, BL

1,375 1.e-3 – 1.e-6 Unreasonably long run, 
calculation stopped

25 including 
BLs 

Transient, 
timestep 1.e-3, 
CFL 12

Patch, hex high 
quality, domain 
3 d 2 M

1,375 1.e+1 – 1.e-3  Uneven gap velocity 
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Many meshing techniques were used, resulting in improved convergence. The solution was transitioned 
from steady to transient, and by varying the number of inner iterations per time step, a good convergence 
was achieved. The CFL number was controlled and kept below 12, which was considered acceptable for 
the implicit interative solver that was used. The more accurate (lower residuals) transient solution helped 
to stabilize the flow at Re = 290, as indicated in the first two rows in Table 3), which confirmed that the 
flow was still in Couette regime. 

The Re number was low enough (maximum rotational speed in these simulations was 50 rad/s) to assure 
that the flow remained laminar. The result did not recemble rotating vortices. An axial waviness was 
noticeable in the gap, which produced mixing, but there was no evidence of stable vortex formation. The 
waves seem to either travel or fluctuate. This flow behavior continues up to Re numbers way above 
Recktenwald’s Re = 261. 

To gain a better understanding of the flow structure in small gaps such as those in the salt pump, and to 
validate the result, the current simulations were compared to those conducted in a similar numerical study 
(D. Deng, 2007) which included analysis of the flow structure and the Taylor vortex appearance in narrow 
gaps related to bearing operation. The working liquid was silicone oil, with viscosities an order of 
magnitude higher than those in the present study. The studied radii ratio (  0.99) is very close to the the 
radii ratio in this work (  0.98). Calculations were performed using the commercial CFD software 
ACE+. The results are shown below for three regimes: Couette (Figure 12), Taylor vortex flow (Figure 
13), and wavy vortex flow (Figure 14). 

Figure 12. Couette flow regime for narrow gap   0.99 (D. Deng, 2007) (left), and   0.98 from present 
study (right). The three velocity components are shown from left to right: normal to the gap, across the gap, 
and in the axial direction. The result demonstrates stable Couette flow. 

 The specific parameters for these two computations are given in Table 4. 
Table 4. Data for comparative calculations used to validate results for Taylor and wavy flow regimes

Re number Rotation speed, rpm
(D. Deng, 2007) This study (D. Deng, 2007) This study

Results Flow regime

283 250 40,000 87 Figure 12 Couette
424 400 60,000 138 Figure 13 Taylor
708 1000–3000 100,000 477–1092 Figure 14 Wavy

At low rotational speed, the flow is dominated by viscous forces and is very regular, with only radial 
(normal to a plane across the gap) velocity component. In Figure 12, note the scale on axial velocities and 
across-gap velocities. The computations were carried out for slightly different Re numbers, but they were 
within the Couette regime. The domain used in the present calculation is 10 d, whereas in Deng (D. Deng, 
2007), the domain is 2 d. Results are practically identical, thus confirming the Couette flow structure in 
the analyzed Re range.
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Figure 13. Taylor vortex flow regime for narrow gap 0.99 (D. Deng, 2007) (left), and 0.98 from present 
study (right). The three velocity components are shown from left to right: 
normal to the gap, across the gap, and in the axial direction.

In this work, the instabilites appear at approximately Re = 400, and they continue to be seen at much 
higher Re numbers. The code-to-code comparison was initiated to confirm this result. Deng (D. Deng, 
2007) concludes that at Re = 410, the flow structure transitions to Taylor vortices. Figure 13 shows 
comparison of the flow structure at Re numbers deemed by Deng to represent Taylor vortex flow, and at 
Re = 400 from this study. The simulations show very close results. Deng’s axial domain was 2 d, whereas 
in this simulation, it was 3 d. Deng predicts one pair of vortices: the vortex wave length is  = 2d; 
however, in this simulation, two pairs are visible, resulting in   d / 2 = 1.5 d, which is likely the major 
discrepancy. The normal to the gap velocity component shows waviness, but the vortices are not that well 
expressed as those shown in 
Figure 8 (  0.5). The results from these two calculations deviate from the results of Recktenwald’s 
analysis (A. Recktenwald, 1993) by a factor of approximately 1.7, which might be a result of the purely 
analytical derivation used by Recktenwald, which is contrary to the numerical approach used in this study 
and in Deng’s work (D. Deng, 2007). 

With a further increase in the Re number, the flow transitions to a wavy votex flow. Deng concludes that 
the transition occurs at Re = 438. Note that the Taylor flow occurs in a very narrow range, between Re = 
410 and = 438. In Figure 14, a comparison is made using a much higher Re number (see Table 4), and it 
seems that the flow maintains the same structure as that shown in Figure 13. There is no qualitative 
difference in the velocity patterns, which to some extent confirms the observations made above: that the 
flow in a narrow gap transitions to a wavy vortex flow directly from the regular Couette flow. It is 
interesting to note that at high speeds, the wavelength of vortices in the present simulation increases to  
= 3 d, and only a single vortex pair is seen in the gap, whereas in Deng’s analysis, the wavelength is 
invariant in relation to the speed. 

Based on this limited comparison to results from other studies, it can be concluded that the developed 
model produces repeatable results and can be used for analysis of flows in the gap between the rotor and 
stator of a molten salt pump. 

Figure 14. Wavy vortex flow regime for narrow gap  = 0.99 (Deng, 2007) (left), and  = 0.98 from present 
study (right). The three velocity components are shown from left to right: 
normal to the gap, across the gap, and in the axial direction.
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2.3.4  Eccentric Problem  = 0.98 (Model 2)

For the eccentric case, the transitional Re number was sought by gradually increasing the inner cylinder 
rotational speed, starting with the stable problem shown in Figure 7. Some waviness starts to appear at 
approximately Re 550 and becomes more expressed at Re > 580. Results for Re = 550 are shown in 
Figure 15. The velocity component across the gap is most indicative for the appearance of vortices. As 
seen in the right-hand portion of Figure 15, no clear vortices are visible at Re = 550. The magnitude of the 
velocity component is very low, which means that the flow structure is still dominantly one-dimensional, 
or only radial velocity, as in the Couette regime. 

Figure 15. Eccentric case, narrow gap ( = 0.98) beginning of transition to vortex wavy flow at Re = 550. 

At about 210 rpm (Re = 580), the waves augment, and vortices form in the gap, but only this only occurs on 
the wide side. In the narrow gap, the flow is still in the Couette regime, as shown in 

Figure 16. The magnitude of these vortices is low, and they do not travel in the axial direction. Based on 
an analogy with the concentric case, this regime should correspond to Taylor flow. Two vortex pairs 
form, as in the concentric case, resulting in the same wavelength. It appears that the wavelength does not 
depend on the offset of the inner cylinder and is only dependent on the rotational speed. This observation 
still must be confirmed with analyses of offset problems at higher angular velocities. 

Velocity vectors in the wide gap Across-gap velocity component
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Figure 16. Inception of Taylor vortices for  = 0.98 and Re = 580. 

Another specific feature is that the vortices do not occupy the entire gap, but rather, they are attached to 
the moving cylinder. To aid in visualization of the flow structure, a plot of the velocity vectors is provided 
in Figure 17. The maximum velocity next to the moving cylinder wall is trimmed to a lower value to 
allow for a clearer picture of the gap velocity distribution. The wavy structure of flow is propagating 
across the entire gap, but it changes direction the next to the wall region, where vortices exist, whereas it 
remains negative (reversed direction) in the second half of the gap next to the stationary wall. The 
magnitude of the reversed flow varies, creating the appearance of waves in the entire gap. Although the 
appearance is different, the eccentric problem flow structure has no qualitative differences when 
compared to the concentric case. The same waves begin to appear at slightly higher speeds, but otherwise, 
the flow pattern remains the same. 

Based on these simulations, the analysis of the flow at relatively low rotational speeds up to 
approximately 200 rpm is considered complete. The flow in gaps, which is similar to that in the molten 
salt pump, transitions to a wavy flow with a complex vortex structure. The eccentricity does not affect the 
structure; it only stabilizes the flow to higher speeds. Analyses will continue with simulations of flows at 
speeds closer to what actually occurs 300–1800 rpm and they will focus on narrow gaps with variable 
eccentricity. 

Velocity component across the narrow gap Velocity component across the wide gap
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Figure 17. Flow structure in wide gap, Re = 580  = 0.98. Maximum velocity is clipped to a lower value of 0.4 
to better illustrate the flow direction and the wavy structure.
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3. FLUID FORCES ACTING ON THE INNER CYLINDER

The goal of these simulations is to compute the fluid forces acting on the inner cylinder to assist in  the 
development of an active magnetic bearing control algorithm. The inner cylinder represents a surface 
immersed in the liquid rotating at a constant speed. The surface is subjected to two types of forces: a 
hydrodynamic pressure force, and a wall shear force. Typically, the hydrodynamic pressure is dominant, 
because it has a higher magnitude.

The AMB control mathematical representation uses a rigid body dynamics mechanical model in the 
center of mass coordinates. The fluid forces contributing to offset the inner cylinder (pump rotor) from its 
centered position are acting in a plane perpendicular to the cylinder axis. It was assumed that this is the 
X–Y plane, and the fluid forces were calculated for this plane. 

In the CFD model, each surface was discretized with facets (f), which are small planes forming the 
computational element. The force (F) on a continuous surface was computed as a sum of fluid forces 
acting on each individual facet:

𝐹 = ∑𝑓(𝐹𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑓 + 𝐹𝑠ℎ𝑒𝑎𝑟

𝑓 ) ∙ 𝒏, (4)

where 

𝐹𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑓  𝑎𝑛𝑑 𝐹𝑠ℎ𝑒𝑎𝑟

𝑓 are the force vectors from pressure and shear on a facet, and 
n – is a user-specified direction for which the total force is projected. 

In this instance, the force was projected on the X and Y directions of the plane orthogonal to the axis of 
rotation.

The pressure force component was computed as follows:

𝐹𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑓 = (𝑝𝑓 ― 𝑝𝑟𝑒𝑓)𝑎𝑓, (5)

where pf is the hydrodynamic pressure, pref is a reference pressure, and af is the facet area vector. 

The shear force was computed as

𝐹𝑠ℎ𝑒𝑎𝑟
𝑓 = ― 𝑇𝑓 ∙ 𝑎𝑓, (6)

where Tf is the shear stress tensor, defined as

𝑇 = 𝜇(∇𝑣 + ∇𝑣)𝑇 ― 2
3𝜇(∇ ∙ 𝑣)𝐼, (7)

where: 

µ is the dynamic viscosity of liquid, and 

v is velocity. 

For incompressible fluids, as in this simulation, the second term in Eq. (7) is zero. 

The fluid forces are dynamic and were computed in function of time. They were also computed by using 
an axial periodic condition, so they must be rescaled to the real inner cylinder length in order to produce 
the total forces acting on the cylinder. 
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4. COMPUTING OF FORCES IN HIGH-SPEED ROTATIONAL FLOWS: 
CONCENTRIC CYLINDERS 

This section presents the evaluations of flows in the gap at high rotational speeds. The molten salt pump 
is designed for speeds of up to 2,400 rpm (40 Hz). The simulations were carried out with 5 Hz (300 rpm) 
increments. The maximum speed was assumed to be reached for 8 seconds, resulting in a linear ramp up 
speed of 300 rpm/sec. 

4.1 INNER CYLINDER ROTATIONAL SPEED OF 300 RPM (RE = 840)

The problem was simulated by increasing the speed from 0 to 300 rpm (5 Hz) for 1.0 second. Then the 
calculation was carried out for another 4 seconds at a constant speed to allow the flow to stabilize and 
reach a steady behavior. This corresponds to 25 rotations. To hold the CFL below 10, timesteps of 0.0005 
seconds were used, and 10,000 timesteps were computed for 5 s of real time. Each timestep was 
converged for 40 inner loops of the iterative solver to lower the momentum residuals by at least three 
orders of magnitude. The simulation took several days to complete on 16 compute processes. 

This speed range is characterized by flow transition from viscous to wavy vortex flow, and the structure 
changed rapidly from Couette to Taylor and then to wavy. The force is shown in Figure 18 from a run that 
uses a domain size of 6 d (2 wavelengths). This domain size was found to be more representative for the 
actual force, which is further analyzed in Section 4.2 below. 

Figure 18. Forces on the inner cylinder for a speed of 300 rpm and an axial domain of 6 d.

As explained above, the velocity linearly increases from zero to 300 rpm in one second. The force is 
practically zero in the Couette regime. At around 260 rpm (0.85 s), the force begins to develop. This 
velocity corresponds to a wavy flow structure. Taylor vortices were previously calculated to appear at 138 
rpm. The corresponding speed is attained at around 0.4 s, which means that during the Taylor vortex flow, 
the forces are also not noticeable. For the first second of transient at a constant speed of 300 rpm (1–2 s) 
the force does not follow a particular pattern. In the remainder of the calculated period, the force takes on 
an oscillatory behavior, and toward the end of the period (6 s) it stabilizes to a clear wavy profile. The 
initial unstructured force period of 1–2 s could be attributed to a flow transition, from stable to wavy 



17

vortex flow. The used ramp-up speed of 300 rpm/s has a shorter timescale than the periods of flow 
restructuring and force development. 

The force on the inner cylinder, decomposed on X and Y coordinates (Figure 18), changes direction with a 
frequency of about 2.5 Hz over a period of 0.4 s. This frequency corresponds to half of the cylinder 
rotational speed (5 Hz), which is equivalent to the average gap flow velocity. This indicates that the force 
is caused by rotating vortices carried by the flow at an average speed of 2.5 Hz (150 rpm). There is a 
tendency of force decay, but the calculated period is short and does not allow the decay rate to be 
determined.

Figure 19. Pressure on the inner wall (left) and the radial velocity in the gap (right) 
for a speed of 300 rpm, domain 6 d.

To illustrate the flow structure at 300 rpm, the pressure on the rotating cylinder (left) and the cross gap 
velocity (right) are plotted in Figure 19. Two pairs of vortices are noticeable, as indicated by their 
pressure imprints on the wall. The vortices do not seem to travel in the axial direction; rather, they stay 
confined within the computed domain of two wave lengths (2).  

4.2 ROTATIONAL SPEEDS OF 600 RPM, OR 10 HZ (RE = 1,680): 
EFFECT OF THE AXIAL DOMAIN SIZE

A speed of 600 rpm was achieved by increasing the speed of the rotating cylinder from 300 to 600 rpm 
for one second. This speed range is entirely in the wavy regime and is more suitable for use in analyzing 
the flow structure and the force dependence on the axial domain size. Three domains were simulated with 
3, 6, and 9 d (gap sizes) axial lengths. They correspond to 1, 2, and 3  The same mesh resolution was 
used for the grids, thus minimizing the discretization effect. 
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Figure 20. X component of vortex-induced force for three axial domain sizes —3, 6, and 9 d—plotted 
on the same scale for comparison. During the first second (6–7 s), the speed increased 
from 300 to 600 rpm, and then it remained constant for 5 seconds.

Figure 20 combines the results from the three problems by showing the force projection on the X axis, 
which is orthogonal to the rotating cylinder. In all three cases, the forces oscillated with the same 
frequency of 5 Hz, corresponding to the vortex rotational speed. However, the magnitude was different, 
and some phase shift was noticed. The 6 d case initially had the lowest magnitude, which grew toward 
end of the period, whereas the 3 and 9 d cases had similar magnitudes in the initial period. The magnitude 
varied over time, but no dependence on the domain size was evident. Also, some time shift was seen that 
was likely caused by restructuring during the initial period of flow, after the velocity remained constant 
(7 s). This result indicates that both the force magnitude fluctuation and the time shift have a numerical 
origin. Because the force magnitude is insignificantly low for the practical problem of magnetic bearing 
control, no further investigation of the numerical instability was carried out. Based on this result, it was 
concluded that the actual domain, which is about 220 d, will not generate vortex-induced forces of merit 
for the magnet control. 

An illustration of the flow structure for the cases described above is provided in Figure 21. The pressure 
on the inner wall is shown on the left. Two features are noticeable. The 9 d domain does not contain three 
vortex pairs as expected; instead, it has two vortex pairs, as in the 6 d case. The vortices simply widen and 
take the entire space. The axial wavelength for the 3 and 6 d domains is 3       whereas for 
the 9 d problem, the axial wavelength is 9/2 = 4.5  Another finding is that the waves stretch more in the 
azimuthal direction relative to the 300 rpm case (Figure 19). For the 300 rpm case, 18 waves are 
distinguishable, whereas only 12 waves can be counted for the 600 rpm case. As expected, the axial 
domain size does not affect the azimuthal vortex wavelength. This peculiarity was monitored further at 
higher speeds.

The right portion of Figure 21 shows a single particle track for the three cases. While the 3 d domain 
seems narrow, and the particle often leaves the domain, the 6 and 9 d cases fully encompass the particle 
track. This confirms the understanding that there is no flow motion in the axial direction, except for some 
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light deviation from a perfect trajectory (as seen in the Couette regime) within the 6 d axial space. The 
vortices do not travel in the axial direction. 

Figure 21. Vortex pattern as pressure imprint on the inner (rotating) cylinder wall (left) and particle tracks 
for one revolution (right) for the three domains 3, 6, and 9 d (from bottom up).

4.3 ROTATIONAL SPEEDS CLOSE TO RATED (1,200–2,400 RPM)

With an increasing inner cylinder speed, the flow structure did not change. The vortex pattern was 
preserved, as well as the vortex waviness. Figure 22 shows the results for three rotational speeds: 1,200, 
1,800, and 2,400 rpm, as computed with the 6 d model. Both x and y force components are plotted, and 
insets show the pressure on the inner wall, the particle track, and the vortex shedding. The results are 
quite similar to the those obtained at lower speeds. Except for sporadic spikes in force evolution, likely 
caused by numerical instability, the force remained low, with a magnitude not dependent on the speed. 
The force fluctuated at a frequency that corresponds to half of the cylinder’s rotational speed, as noted 
above. The same tendency remained for up to the maximum speed of 2,400 rpm. It can also be concluded 
that these forces were caused by the rotating vortices and should not represent a factor in the magnetic 
bearing control because of their low intensity.

The vortex pattern remained unchanged with increasing speed. Two pairs of vortices are noticeable that 
do not travel in axial direction. When a particle track is computed, it shows that a single released particle 
stays almost confined within the 6 d space. A close observation of the circular vortex wavelength 
indicates a slight vortex stretching and widening as the speed increases. Twelve circular waves were 
counted for the 1,200 rpm case, whereas only 10 circular waves were counted for the 2,400 rpm speed. 
This finding is not significant and does not affect the overall impression regarding a preserved flow 
structure as the speed reaches maximum values. 
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Figure 22. Combined plots of force, pressure imprint of the inner cylinder, particle track, and transverse gap 
velocity (vortex pattern) for rotational speeds of 1,200 (top), 1,800 (middle) and 2,400 (bottom) rpm.  
Computations were performed with the 6 d model.

2400 RPM

1200 RPM

1800 RPM
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To exclude the possibility for an effect of the domain size, speeds of 1,200 and 1,500 rpm were computed 
with the 3 d model. The results are presented in Figure 23 and are similar to the results from the 6 d 
model. They are practically identical, except that the force had a lower magnitude because the model 
domain was twice as small. The force also oscillated at a frequency corresponding to the rotational speed. 
The oscillation magnitude varied, but it was still subject to sporadic spikes which were attributed to the 
numerical stability. 

Figure 23. Combined plots from 3 d model calculations at rotational speeds of 1,200 and 1,500 rpm.  Insets in 
the plots show the vortex imprint on the inner wall (lower right), the particle 
track (lower left), and the vortex shedding (top).

1200 RPM

1500 RPM
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With this scope of simulations, the concentric problem is considered sufficiently analyzed with the 
employed computational methods. When the cylinders are concentric, the generated fluid forces result 
from the vortex flow structure of the gap. Vortices transport fluid in the gap, thus equalizing the pressure 
gradient. At low speeds corresponding to the Couette regime, the flow has no vortical structure because 
the viscous forces damp the pressure gradient. As the rotational speed increases, the vortices appear. They 
have regular structure only in the Taylor regime, which was found to exist in a narrow speed range. For 
higher speeds, the vortices have a wavy structure which is preserved up to the maximum simulated speed 
of 2,400 rpm. The vortices generate fluctuating forces with low intensity, which should not present a 
concern for the magnetic bearing’s controls. 

4.4 SUMMARY OF CONCLUSIONS FOR THE CONCENTRIC PROBLEM

1. The force is very small and is caused by rotating vortices. In the ideal case with an adequately 
long cylinder (d in the order of hundreds), the force might be fully balanced and sum to zero.

2. Vortices forming in the gap have a wavy structure and are carried by the flow, with an average 
fluid speed of about half of the rotating cylinder speed. Their rotation causes force oscillations 
with the same frequency, for example, at a cylinder speed of 10 Hz, the force oscillates with a 
frequency of 5 Hz.

3. The force magnitude does not depend on the computational axial domain size. The observed 
differences likely have numerical origin (solution stability based on the time step or the inner 
iterations number), because the spatial discretization is kept the same.

4. The azimuthal vortex wavelength decreases according to the speed. The vortices stretch.
5. The vortices do not travel in an axial direction. Some deviation from a fully steady position is 

noticed, but this is confined within a 6 d axial space.
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5. ANALOGY TO THE LUBRICATION THEORY

An important question for salt pump magnetic bearing control is whether the lubrication theory can be 
applied, and to what extent, for analysis of the fluid’s impact on the pump rotor. The lubrication theory 
provides a solid ground, with relatively low computational cost. The lubrication theory (tribology) is 
based on solutions of the Reynolds equation with a series of simplifications. The general form of the 
Reynolds equation in cylindrical coordinates can be found in multiple references. Below is a derivation 
given by Kirk (R. Kirk, 1975):

1
6

1
𝑅2
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∂𝜃

ℎ3

𝜇
∂𝑃
∂𝜃

+ ∂
∂𝑧

ℎ3

𝜇
∂𝑃
∂𝑧 = 𝜔𝑏

∂ℎ
∂𝜃 +2

∂ℎ
∂𝑡 , (8)

where 

P is the pressure, 
h is the film thickness, 
R is the journal radius, 
 is the angular velocity, and 
 and z are azimuthal and axial coordinates.

Two major simplifying assumptions are typically made: either the axial pressure derivative is zeroed, 
resulting in a “long” bearing, or the circumferential derivative is zeroed, resulting in a “short” bearing. 
Full analytical Reynolds equation solutions can be found in the literature (D. Sfyris, 2012).

The developed CFD model uses periodic axial boundary conditions, which make it a long bearing model 
analog. In tribology, a long bearing is a bearing with L/D >> 1, where L is the length, and D is the 
diameter of the bearing. The rotor of the salt pump resembles a long bearing, with L/D = 230/66 = ~3.5 

There are two basic properties that distinguish the pump rotor from a bearing: the gap, which compared to 
a typical bearing clearance is about 20 times larger, and the fluid viscosity, which is about the same 
magnitude lower. CFD simulations were used as described below to analyze similarities and to derive 
conclusions for potential use of lubrication practices for salt pump rotor performance.

5.1 STATIC LOADS OF INFINITE BEARINGS

The loads on rotating concentric bodies (rotor and stator) are dynamic when the rotor (or bearing journal) 
displacement is time dependent, and they are static when the displacement is constant. There are no forces 
(except those caused by vortices, as discussed in Section 0) if the bodies are concentric. In the Reynolds 
equation, the dynamic forces are expressed by the existence of film thickness (h) temporal derivative. A 
comparison of numerical solutions for static forces against steady solution of Reynolds equation for long 
bearings was performed, as detailed in this section. 

Sommerfield succeeded in solving the steady Reynolds equation for an infinitely long bearing. This 
solution is provided in many lubrication textbooks (O. Pinkus, 1961). First, the Reynolds equation was 
solved to obtain the pressure evolution, and then the loads were computed by integrating the pressure over 
the journal bearing surface. The bearing geometry, rotational frequency, loads, and lubricant viscosity can 
be combined in a nondimensional number named after Sommerfield (S), given by the following 
expression:
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𝑆 =
𝜇𝑁𝐿𝐷

𝑊
𝑅
𝑐

2
, (9)

where 

W is the load, 
N is the journal rotational frequency, and 
c is the clearance (gap).

This nondimensional number for long bearing static loading depends only on the relative clearance  = 
d/c, where d is the journal displacement. It is given by the following relation:

𝑆 = (2 + 𝜀2)(1 ― 𝜀2)1/2

12𝜋2𝜀 . (10)

The relation given in Eq. (9) was obtained by allowing the gap pressure to become negative. It must be 
noted that in the simulations, the pressure also takes negative values, and it physically corresponds to the 
solution given above. Pinkus (O. Pinkus, 1961) provides an additional solution by modifying the pressure 
boundary conditions to limit the pressure within the positive range, which leads to a more complex form 
of the Sommerfeld number not shown here. Both numbers are plotted in Figure 24, with the negative 
pressure solution indicated by the solid green line, and the positive pressure solution indicated by the red 
dots.

To simulate the static forces on the pump rotor, a series of calculations was carried out by implementing 
stepwise increases in  the displacement of the inner cylinder. After each step, the calculation was run long 
enough to allow the forces to stabilize and reach steady values. Figure 24 shows the result, as indicated by 
the black line. The numerical results are for two rotational speeds: 300 rpm (5Hz) and 900 rpm (15Hz). 
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Figure 24. The plot on the left shows the Sommerfield (S) number calculation for the pump rotor and a 
comparison to theoretical solution for infinitely long bearings (left), accounting for the negative 
pressure (green line), and positive pressure (red markers) (O. Pinkus, 1961). The plot on the right shows 
component forces in the simulation.

The good agreement between the numerical and theoretical solutions indicates that the pump rotor static 
loads can be reasonably well predicted by a solution of the Reynolds equation for long bearings. The 
numerical result yields negative pressure, which produces higher loads compared to the S number for 
positive pressure (red dots). The question about the physical meaning of the assumption for positive 
pressure requires further investigation. As the speed increases, the deviation from the theoretical S 
number becomes larger: the ratio of frequency over the load is not constant. This can be explained by the 
growth of inertia effects, but no deeper analysis was carried out to determine the discrepancy’s origin. 

The left plot in Figure 24  also shows a different, perfunctory, yet valid numerical result (gray line) 
compared to a short bearing result from Kirk (R. Kirk, 1975). To achieve this solution, the viscosity in the 
model was increased about 7,500 times to match a typical c2 term using data from Faria (M. Faria, 
2014), and the clearance was left as it is for the salt pump. The calculations were not carried to high 
eccentricities, because the solution diverged. This result demonstrates the difference between the short 
and long bearing theories (S number slope) and the independence of S from the fluid properties. 

The numerical solution allows the component forces to be analyzed. The assumed displacement in the 
simulations was positive in the x direction (load direction). When decomposed on x and y coordinates, the 
resultant reaction varies as the eccentricity increases (Figure 24, right). At small displacements, the 
reaction is pointed at almost 45 degrees relative to displacement direction (x and y forces have almost the 
same magnitude), but with the gap closing, the reaction becomes more orthogonal to the displacement 
(load). The gap grows as the displacement increases. The force in line with the load (x-force) is positive 
for most of the  range, but at high eccentricities, it becomes negative. 
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To further illustrate the differences between the numerical and the theoretical (Reynolds) solutions, the 
gap pressure is plotted in Figure 25. The major difference is seen in the pressure slope. The increased 
slope in the numerical solution causes a larger Y component force. The discrepancy grows with higher 
rotational speeds, as seen in the left plot of Figure 24. 

Figure 25. Static loading pressures from numerical solution (red), 
long bearing (blue), and short bearing (green).

5.2 ANALOGY DURING DYNAMIC LOADING

When the loading is dynamic, as when, due to an external force, the journal (rotor) moves, the forces are 
generally higher and different from the static forces. These forces are computed by solving the unsteady 
Reynolds equation. Again, two approximations are routinely used to simplify the solutions—long and 
short bearing approximations, as discussed above for the static problem. The boundary conditions are 
notably identical: for short bearings, the pressure is assumed to be equal to ambient (or zero) at the 
bearing extremities,

P(0) = P(L) = 0, (11)

where L is the bearing length.

For long bearings, the pressure is zero at one position around the circumference:

P(0) = P(2) = 0. (12)

For short bearings, the following solution for the pressure was given by Kirk (R. Kirk, 1975):
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𝑃(𝜃,𝑧) = ―
3𝜇𝑧(𝑧 ― 𝐿)

4ℎ3 𝜔 ∂ℎ
∂𝜃

+ 2 ∂ℎ
∂𝑡

. (13)

The film thickness h can be calculated by the relationship given below:

ℎ = 𝑐 ― 𝑥 𝑐𝑜𝑠(𝜃) ―𝑦 sin (𝜃), (14)

where 

h is the film thickness, 
c is the clearance, 
x and y are the displacements, and
 is the rotation angle relative to the center of bearing. 

The derivation of this approximate relationship was not provided in Kirk (R. Kirk, 1975). An evaluation 
of the accuracy of this expression as applied to the salt pump geometry was carried out as described 
below, and the problem is illustrated in Figure 26. The displaced journal is shown with the dashed line: 
the displacement was only in the positive x direction.

Figure 26. Film thickness calculation and error evaluation.

The x displacement is marked with the dotted black lines on the diagram. Four discrete angles were 
considered: zero, a positive cosine, 90 degrees, and a negative cosine. The term x cos is also indicated. 
The error in calculating the film thickness appears as a distance between the red dotted line and the 
dashed line of the displaced journal. The error is zero for angles of 0 and 180 degrees and is the largest for 
angles of 90 and 270 degrees, as seen in Figure 26. The calculated film thickness is always smaller than 
the real one. It is possible to evaluate the largest error at 90 degrees for the AMB geometry with the 
following expression:

(𝑅 + 𝑐) ― 𝑅2 ― 𝑥2 ―𝑐 = 33 ― 332 ― 0.52 = 0.0038 𝑚𝑚, (15)
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where R is the journal radius. Relative to the clearance c (0.75 mm), the error is 0.5%. This maximum 
error is acceptable for the current application, and the above formula for the film thickness is used further 
in the analyses. 

For long bearings, a solution can be found in the textbook of Pinkus (O. Pinkus, 1961) in the following 
form:

𝑃(𝜃) = 6𝜇 𝑅
𝑐

2 (2 + 𝜀.𝑐𝑜𝑠𝜃)
(1 + 𝜀. cos 𝜃 )2

𝜔 (𝜀.𝑠𝑖𝑛𝜃)
2 + 𝜀2 + 1

𝜀
1

(1 + 𝜀.𝑐𝑜𝑠𝜃)2 ― 1
(1 + 𝜀)2

∂𝜀
∂𝑡

(16)

where =x/c is the relative eccentricity

The film thickness time derivative relates to the eccentricity time derivative, as follows:

∂ℎ
∂𝑡 = ―𝑐

∂𝜀
∂𝑡𝑐𝑜𝑠𝜃, (17)

and they both can be computed knowing the displacement velocity 𝑥 (grid velocity in simulation),
∂ℎ
∂𝑡 = ― 𝑥.𝑐𝑜𝑠𝜃      

∂𝜀
∂𝑡 =

1
𝑐𝑥. (18)

The computations were performed using the following approach. First, the long and short bearing 
pressures were compared to the computed pressure. The forces were calculated based on these pressures 
using the integration algorithm explained above. Results are discussed below.

As in the static problem, the largest difference is seen in the Y force component. The Reynolds solutions 
(both short and long) compute much smaller, positive Y force. The X force is properly predicted, resulting 
in a negative (against the motion) reaction (Figure 27). In the theoretical solutions, the X force is 
dominant, whereas in the numerical result, the Y force is dominant. 
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Figure 27. Forces during dynamic (25–25.01 s) and static (25.01–25.02) loading for 1500 rpm.  Solid lines 
indicate CFD, dotted lines indicate long bearing, and dashed lines indicate short bearing.

The large Y force appearance is explained by the existence of a pressure gradient in the gap (Figure 28) in 
the calculation. The computed pressure becomes negative, contrary to the Reynolds pressure, which stays 
positive. Pinkus (O. Pinkus, 1961) writes that for bearings, a negative pressure is not possible, thus 
affirming that the Reynolds equation should be solved with boundary conditions that will prevent the 
pressure from becoming negative. In the simulations, a periodic boundary condition was used on the sides 
in the axial direction. This approach results in an infinitely long configuration, and the liquid (lubricant) 
was restrained to remain in the gap. To verify the influence of the axial boundary condition on the 
pressure evolution in the gap, a finite configuration with 20 d length was solved under constant pressure 
boundary conditions that would allow incoming/outgoing liquid fluxes to exist (breathing). Results are 
presented below.
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Figure 28. Loading pressures at the end of dynamic linear motion with 6 cm/s from 
numerical the solution (red), long bearing (blue), and short bearing (green).

5.3 POSITIVE GAP PRESSURE SOLUTION, DOMAIN 20 D 

Positive gap pressure indicates that the pressure in the gap during dynamic and static loading remains 
positive in the absolute sense (i.e., it can still be lower than the ambient). In the simulations, the ambient 
pressure was assumed to be zero for convenience, but often it can be assumed to be equal to the 
atmospheric pressure (1 bar) or even higher. In the case of zero ambient pressure, negative pressures with 
magnitudes within the ambient pressure still satisfy the “positive” pressure assumption. 

A simulation was set up using the same computational methods, but with two modifications: the domain 
was increased to 20 d (15 mm, L/D ~ 1/4), and zero pressure boundary conditions were imposed on the 
two axial extremities. The boundary conditions were open flow, which allowed the flow to enter and exit 
from the domain, resulting in some recirculation at the ends. Techniques were applied to minimize this 
recirculation and to achieve as much even pressure distribution as possible at the side surfaces (element 
faces). A simulation was run at 600 rpm and 6 cm/s linear displacement of 0.6 mm, as before. Results 
were compared to short and long bearing pressures and forces.

The result of the constant pressure boundary condition is evident, leading to positive pressures in the gap. 
It is notably comparable to the lubrication pressures (Figure 29). The magnitude varies because the 
simulated configuration is finite and produces lower pressure than the long bearing Reynolds equation 
solution (blue line). The short bearing pressure (highest pressure) is overestimated because a finite length 
of 5 cm was assumed, which produces higher pressure. Figure 29 has only qualitative meaning, 
illustrating that the calculated and the theoretical pressures are alike. This observation is valid for both 
dynamic and static loading (top and bottom plots in Figure 29). 

The resultant forces decomposed on the two principal axes are shown in Figure 30. As seen above in the 
periodic configuration (Figure 28), the large Y force has disappeared, confirming the better analogy to the 
lubrication theory solution. The Y force magnitudes are very close in both dynamic and static loading, 
except for the short bearing which is higher. The major reaction is on the X axis and opposes the motion. 
The magnitudes are significantly different, as explained above. 
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Figure 29. Midline gap pressure at the end of the linear motion (top), and during the static operation 
(bottom), for the three configurations: simulation (red), long bearing (blue), 
and short bearing (green). 

Figure 31 illustrates the pressure contours on the rotor at the end of the calculated period during static 
conditions. The pressure is close to zero (side condition pressure) in the entire domain except in the 
minimal gap zone, where it transitions sharply from negative to positive. The same is also plotted in 
Figure 29. Although it is a finite length solution, because of the short domain simulated (15 mm), it 
resembles the short bearing lubrication solution more, where the azimuthal pressure derivative is zeroed. 
To evaluate whether the long or short theory is more appropriate for this application to the salt pump 
rotor, a full-size problem must be simulated. 
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Figure 30. Forces during dynamic and static loading with constant pressure boundary conditions and finite 
rotor length (20 d) for simulation (solid line) and lubrication theory (dotted lines). X component forces are 
shown with red, and Y component forces are indicated with green.

Figure 31. Gap pressure distribution in the simulation in the static regime in the vicinity of minimal gap.
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6. FORCES IN ECCENTRIC CYLINDERS

The computation of fluidic forces is discussed in the previous section. Here, a more comprehensive 
approach to the same problem is presented, with a focus on the extended operational range. The results 
are presented in a systematic form, readily portable to the bearing control algorithms. 

The fluidic forces grow as the inner cylinder is offset. This is caused by pressure redistribution in the gap. 
The force magnitude and direction relative to the inner cylinder motion is of primary interest for magnetic 
bearing control. To properly model the motion of the inner cylinder, the computational models are 
amended with grid morphing functionality. Grid morphing is a computational technique that allows the 
grid to be physically changed at each time step to simulate a time-dependent motion. Two parameters 
define the grid motion: the displacement, and the grid velocity. The simulations were performed in the 
cartesian coordinate system, in which the displacement is decomposed in x and y directions, and the 
velocity is defined as the time derivatives of displacement in these two coordinates:

 
∂𝑥
∂𝑡 = 𝑥 and

∂𝑦
∂𝑡 = 𝑦. (19)

6.1 LINEAR ROTOR MOTION, LONG BEARING ANALOG 

First, a linear motion of the rotor in the X direction was simulated in periodic axial conditions (long 
bearing). The gap size d (in some references, the clearance, c) of the current pump design is d = 0.75 mm. 
To prevent a full gap closure and to accommodate a tolerable grid distortion during grid morphing, a 
maximum displacement of 0.6 mm was assumed, resulting in a minimum gap of 0.15 mm and a relative 
eccentricity  = 0.6/0.75 = 0.8. A linear velocity of 6 cm/s at five rotational speeds—300, 900, 1,200, 
1,500 and 1,800 rpm was deemed to be representative for the rotor motion in the real configuration. The 
time advancement was performed with a timestep selected based on two factors: (1) at least 500 time 
steps would occur during the motion period, and (2) a minimum of 3,000 time steps would occur within a 
full cylinder rotation. The data used in the simulations are given in Table 5.

Table 5. Simulation input data for linear motion of inner cylinder 
in the X direction with a maximum displacement of 0.6 mm

Velocity, 
m/s

Displacement 
time (s)

Time 
step (s)

Computed 
physical time 

(s)

Rotational 
speed (rpm)

Inner cylinder 
rotations

Time steps per 
revolution

0.06 0.01 2e-5 
2e-5
1e-5
1e-5
1e-5

0.02 300
900

1,200
1,500
1,800

0.1
0.3
0.4
0.5
0.6

10,000
3,333
5,000
4,000
3,333

The forces per unit length are plotted in Figure 32. A period twice as long was computed to allow for 
simulation of the dynamic and static responses. Figure 32 shows the force components. During the 
dynamic period (0–0.01 s), the X force is negative, opposing the motion, and the Y force is positive, 
resulting in a reaction offset in the direction of rotation. As the gap closes, the forces increase, with the 
highest force occurring at the smallest gap. After the motion stops at 0.01 s, the force magnitude 
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decreases, and the X component changes from negative to positive. The rotation speed has strong 
influence only on the Y component force, which grows in proportion to the speed. The X component is not 
largely affected. This force response to the rotational frequency could be attributed to the inertial effects 
of the moving liquid. The boundary conditions corresponding to a long bearing also have a significant 
effect on the force, as pressure in the gap can assume negative values. The static forces are also affected 
by the speed of rotation, and they grow as the speed increases. 

Figure 32. Dynamic and static forces during and after a linear motion of rotor (journal) of 6 cm/s and a 
maximum relative eccentricity  = 0.8.  Dynamic forces are in the 0–0.01 s time interval, and static forces 
are in the 0.01–0.02 s time interval. The relative displacement is indicated by black dots. 

6.2 SINE MOTION OF THE INNER CYLINDER, POSITIVE PRESSURE ANALOG, REAL 
BEARING

The model that uses constant pressure boundary conditions at the two axial extremities of the rotor (see 
Section 5.3) was used to perform this simulation. Two cycles of sine motion along the X axis, each with  a 
frequency of 31.8 3Hz, were simulated. The plot on the left in Figure 33 shows the forces, and the motion 
(position) is plotted on the right. The forces change direction as the position changes direction, following 
a periodic evolution. The X force opposes the motion: during the positive X motion, the force is negative, 
and vice versa. The force is characterized with a two-hump structure because when the gap is small 
(humps), the force is the greatest. The hump profile is well represented in the simulations and is equally 
represented in the lubrication forces. It is perfectly symmetric in the lubrication solution, but in the 
simulation, the first hump is larger. Another peculiarity is that the simulation has a time shift of about 2 
milliseconds for the selected set of frequency and rotational speed from the zero-velocity point. The 
lubrication forces change direction exactly at the zero-velocity point, whereas the simulated force changes 
early. This indicates that during this time interval, the force tends to close the gap. This finding may 
require further analysis.
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Figure 33. Forces (left) and rotor position (right) during sine motion with a frequency of 31.83 Hz; two cycles 
modeled.

Figure 34 illustrates the pressure distribution in the gap. The left side shows the high-pressure spot on the 
inner cylinder wall in the simulation. The time instance corresponds to the highest velocity period of 
motion in positive (top) and negative (bottom) directions. The plots on the right show the mid-gap 
pressure distribution in the simulation and as calculated for the lubrication pressures (long and short). The 
shift of 180 degrees is clearly seen. The magnitude is identical for the positive and negative motions. The 
long bearing solution pressure is negative in the negative motion, which might be a numerical artifact. 
However, it produces the correct force with regard to time and direction. 

 

Figure 34. Pressures during sine motion. The pressure imprint on the inner cylinder wall is shown on the left, 
and the midpoint pressure distribution along the circumference for simulation pressure (red), long bearing 
(blue), and short bearing (green) are plotted on the right.  The top plots show pressures during a positive 
cycle, and the lower plots show a negative cycle at a point of almost minimal gap, just before the velocity 
becomes zero.

6.3 ROTATIONAL SPEED IMPACT ON PHASE SHIFT AND FORCE MAGNITUDE 

To understand the origin of phase shift in the simulation, more rotational speeds (1,200 and 1,800 rpm) 
were computed. The evaluation was focused on two phenomena: (1) the shift in time (phase) between the 
computed and lubrication forces at the point when the rotor stops in the minimum gap position (when the 
X force component becomes zero and the Y component is at a maximum), and (2) the asymmetry in the X 
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force magnitude (humps) when the gap opens (larger hump) and when it closes (smaller hump). Results 
are discussed below.

 
Figure 35. Phase shift evaluation plot with normalized X and Y forces from simulation. Long and short 
bearings are plotted against the rotor position bounds to allow for computation of the phase shift.

Figure 35 depicts the phase shift. The forces are normalized to eliminate the magnitude effect. The sine 
motion position plot is offset in both positive and negative directions, as indicated by the dashed position 
lines, to illustrate the minimum gap (zero velocity) point on the horizontal axis. The lubrication X force 
(short and long) becomes zero, and the Y force becomes maximum at the exact same point, whereas in the 
simulation, the X force zero-point experiences a phase shift of 0.12 PI (2 milliseconds), and the Y force 
maximum point shift is 0.2 PI (3 milliseconds) preceding the zero-velocity point. Therefore, during this 
period, the X force is not opposing the motion, but is instead facilitating the gap closure. The shift is 
invariant from the motion direction. The lubrication X forces do not demonstrate such behavior. They 
change direction at the zero-velocity point.

Analyzing the result, the following observations can be made:

1. The X force always opposes the motion. It is negative when the motion is positive, and vice versa, 
assuming the direction (positive or negative) is determined by the axis orientation. 

2. The first observation above is true regardless of the gap opening or closing: the force opposes the 
opening of one of the gaps, and then it opposes the opposite gap to close. This is likely a result of 
the imposed continuous rotor motion. 

3. When the position is centered, according to previous concentric analyses, no forces should 
develop. However, at that point, the motion velocity is the highest, and the force is still opposing 
the motion, but it has lower magnitude, so it forms a humped profile. This is purely a dynamic 
effect. The Y component at that point is zero, meaning the force is aligned (against) with the 
motion. The same is not true for the computed Y force, which has a strong magnitude at the 
centered position. 

4. The Y force changes its sign at the centered position and zeroes down. It is at its maximum at the 
minimum gap position (zero velocity). The Y force has a sine-like shape in phase with the motion. 
The short bearing force shows inflation contrary to the long bearing, which could result from the 
final length of the bearing. 

5. The computed Y force is also periodic, with some inflation that follows the motion frequency with 
some phase shift, as explained above. The distortion reduces the Y force magnitude at the 
minimum gap position, thus decreasing the likelihood of gap closure from fluid forces.
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Figure 36. Rotational speed effect. X (left) and Y (right) forces resulting from 31.8 Hz sine motion are plotted 
for three rotational speeds: 600, 1,200, and 1,800 rpm.

Figure 36 shows the rotational speed effect on the force magnitude and phase shift. The forces are plotted 
in the same scale to permit the comparison. The X forces fully coincide for all three speeds, so the speed 
of rotation does not affect the force magnitude or the phase shift.  The same is not true for the Y force 
component, in which the force grows proportionally to the speed. Furthermore, the Y force shift is not 
affected, either. 
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7. CONCLUSIONS

CFD analyses of forces developing between the rotor and stator of an immersed in molten salt pump were 
carried out. The obtained results (force magnitudes and directions) can be used to inform a solid body 
dynamic model of a pump rotor for the purposes of magnetic bearing control. The numerical analyses can 
be grouped into three categories:

 Static analyses of concentric configurations. A range of speeds was analyzed, ranging from 
purely viscous conditions up to high rotational speeds. These studies demonstrated that the 
developed models successfully replicate the well-known flow regimes (Couette, Taylor) and were 
thus validated. It was also concluded that when the rotor-stator configuration is perfectly 
concentric, the observed forces are caused by rotating wavy vortices and have low magnitude, 
which is insignificant for the bearing operation. 

 Analyses of rotor static loading. Static loadings were analyzed under the assumption that 
negative pressure can develop in the gap. Along the computed forces, solutions of the Reynolds 
equation for long and short bearings were carried out to analyze the analogy to the lubrication 
theory. It was confirmed that the lubrication theory can be used if the rotor design allows the 
pressure to stay positive relative to the ambient pressure. 

 Analyses of rotor dynamic loading. The dynamic loading is of primary interest for active 
magnetic bearing control. The response to periodic rotor motion was analyzed. The results were 
compared to the corresponding lubrication forces and show very good similarity, with two 
exceptions: a time shift between the computed and lubrication forces was observed, and a 
difference was seen between the axial (X) forces during the gap opening and closing. 

The results suggest the CFD computations should be continued by implementing a rigid solid dynamics 
rotor model that will allow for closing the fluid and solid coupling of the problem. These computations 
will also permit further investigation into the extent that the lubrication idealized solutions are applicable 
to the real molten salt pump configuration. The developed modeling approach and experience gained can 
be used to create a digital analog (twin) of the pump/AMB for further study of the control logic.
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